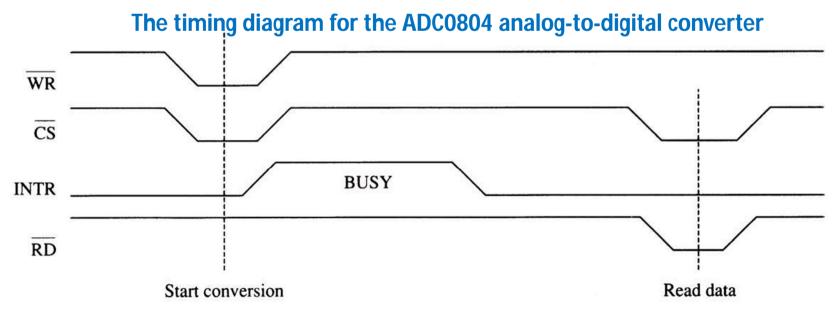
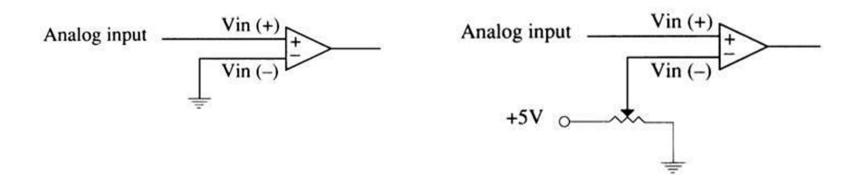

Microprocessors and Microcontrollers (EE-231)

Lab-16

Objective


Interfacing ADC 0804 to Microcontroller

The ADC0804


The ADC0804 Analog-to-Digital Converter

- To operate the converter, the WR pin is pulsed with CS grounded to start the conversion process.
- If a time delay is used that allows at least 100 μ s of time, there is no need to test INTR pin.
- Another option is to connect the INTR pin to an interrupt input, so when the conversion is complete, an interrupt occurs.

The Analog Input Signal

- Before ADC0804 has two analog inputs:
 - VIN(+) and VIN(-)
- These differential inputs are connected to an operational amplifier to produce a signal for the internal analog-to-digital converter.

Generating the Clock Signal

- ADC has an internal clock generator. We just need to connect a resistor and capacitor.
- 'Or'
- It can be an external clock applied to CLK IN pin or can be generated with an RC circuit.
 - permissible range of clock frequencies is 100 KHz - 1460 KHz.
 - desirable to use a frequency as close as possible to 1460 KHz so conversion time is minimized
 - here Fc= 1/(1.1 x RC)

If generated with an RC circuit. CLK IN and CLK R pins are connected to an RC circuit

CLK R 19

CLK IN

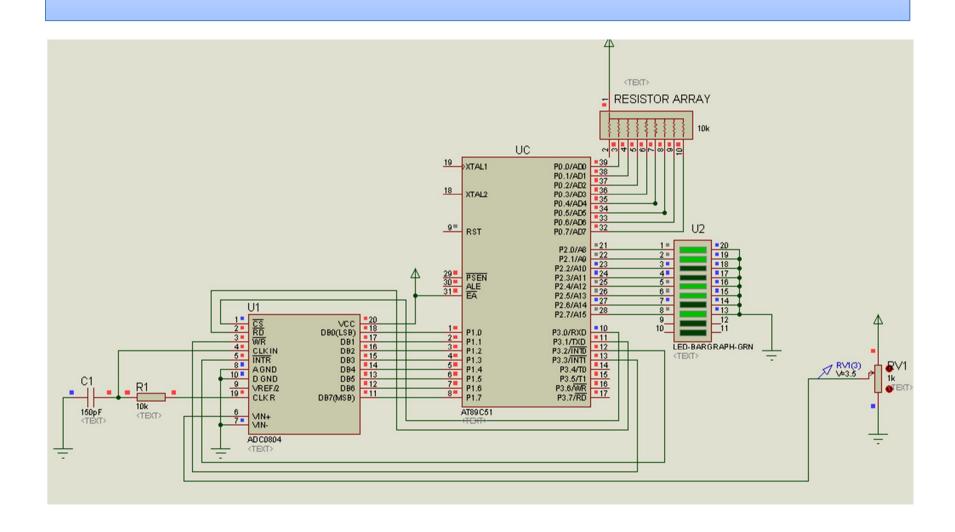
Programming the ADC0804

Polling Method:

- 1. Make CS = 0 and send a low-to-high pulse to pin WR to
- start conversion.
- 3. Keep monitoring the INTR pin using

```
while(INTR==1);
```

- 1. If INTR is low, the conversion is finished. If the INTR is high, keep polling until it goes low.
- 2. After the INTR has become low, we make CS = 0 and send a high-to-low pulse to the RD pin to get the data out of the
- 3. ADC804. Then send this to any of MC pins.
- Interrupt Method:
- 2. Connect INTR pin of ADC to 0804 to INTO or INT1 of 8051 use it as interrupt. Read the value of ADC in ISR.


Todays Task

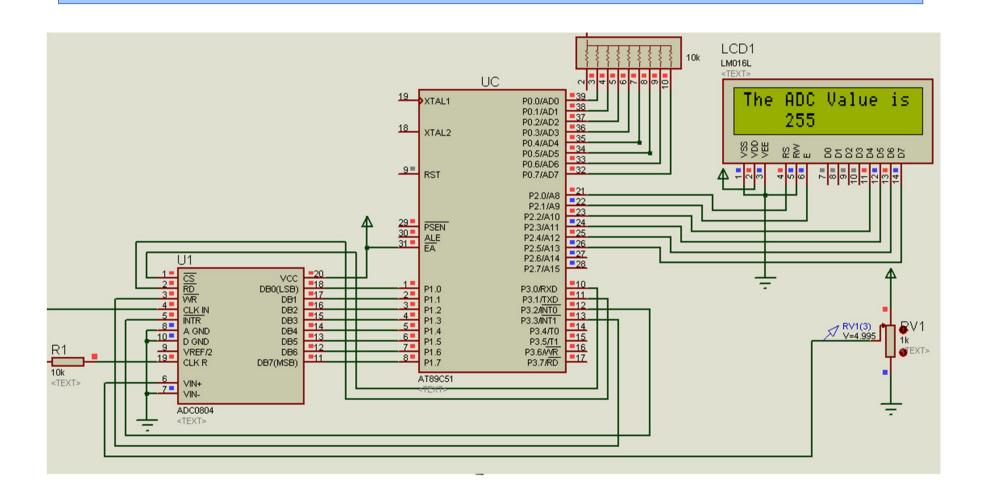
Read the Digital Output from an ADC and display its Value on Bar LEDs. Use a potentiometer to give an analog signal to ADC from 0-5V.

Task Code

```
2 #define ADC P1
 4 sbit cs=P3^0;
 5 sbit rd=P3^1;
 6 sbit wr=P3^3;
 7 sbit intr=P3^2;
 9 void main (void)
10 {
11
12
    while (1)
13
14
    cs=0;
15
    wr=0;
16
    wr=1;
17
18
    while (intr==1);
19
20
    rd=0;
    P2=ADC;
22
    rd=1;
23
24 }
```

Proteus Simulation

Todays Task2


Convert the digital value obtained in the last task to decimal and display it on LCD.

Task Code

```
clude<reg51.h>
 3 #define lcd P2
 4 sbit RS=P2^0:
 5 sbit E =P2^1;
 7 sbit cs=P3^0:
 8 sbit rd=P3^1;
 9 sbit wr=P3^3;
10
12 unsigned char Value=255;
14 void LCD CMD (unsigned char);
15 void LCD Data(unsigned char);
16 void delay ms (unsigned int);
17 void Display String (unsigned char*);
19 void digital output (void) interrupt 0
20 {
21 cs=0;
22 rd=0;
23 Value=P1;// P1 is the port where ADC is connected
25 wr=0;
26 wr=1:
27 cs=1;
28 }
```

```
id main (void)
    unsigned char a,b;
    lcd=0;
    lcd=lcd|0x08;
    E=1:
    E=0:
    delay ms(1);
    LCD CMD(0x28);// Function Set Command
    LCD CMD(0x06);// Entry Mode Set
    LCD CMD(0x0C);// Display on/off Control
    LCD CMD(0x01);// Clear Display
13
    delay ms(1);
    Display String("The ADC Value is");
    delay ms(1);
    EA=1:
                 while (1)
19
    EX0=1;
                 //Displaying Values on LCD
51
   cs=0;
52
    wr=0;
                 LCD CMD(0xC4); //2nd row 5th position
53
    wr=1;
                 //Display First Character 100th Place
                 LCD Data(0x30|((Value/10)/10));
                 //Display Second Character 10th Place
                 LCD Data(0x30|(Value/10)%10);
                 //Display third Character 1st Place
                 LCD Data(0x30|(Value%10));
```

Proteus Simulation

